STARSHAPED COMPACT HYPERSURFACES WITH PRESCRIBED m−TH MEAN CURVATURE IN HYPERBOLIC SPACE

نویسندگان

  • QINIAN JIN
  • YANYAN LI
چکیده

Let S be the unit sphere in the Euclidean space R, and let e be the standard metric on S induced from R. Suppose that (u, ρ) are the spherical coordinates in R, where u ∈ S, ρ ∈ [0,∞). By choosing the smooth function φ(ρ) := sinh ρ on [0,∞) we can define a Riemannian metric h on the set {(u, ρ) : u ∈ S, 0 ≤ ρ < ∞} as follows h = dρ + φ(ρ)e. This gives the space form R(−1) which is the hyperbolic space H with sectional curvature −1. For a smooth hypersurface M in R(−1), we denote by λ1, · · · , λn its principal curvatures with respect to the metric g := h|M. Then, for each 1 ≤ k ≤ n, the k-th mean curvature of M is defined as

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STARSHAPED COMPACT HYPERSURFACES WITH PRESCRIBED k-TH MEAN CURVATURE IN HYPERBOLIC SPACE

In this paper we consider the problem of finding a star-shaped compact hypersurface with prescribed k-th mean curvature in hyperbolic space. Under some sufficient conditions, we obtain an existence result by establishing a priori estimates and using degree theory arguments.

متن کامل

Uniqueness of Starshaped Compact Hypersurfaces With Prescribed m-th Mean Curvature in Hyperbolic Space

Let ψ be a given function defined on a Riemannian space. Under what conditions does there exist a compact starshaped hypersurfaceM for which ψ, when evaluated onM , coincides with them−th elementary symmetric function of principal curvatures of M for a given m? The corresponding existence and uniqueness problems in Euclidean space have been investigated by several authors in the mid 1980’s. Rec...

متن کامل

Starshaped Compact Hypersurfaces with Prescribed M-th Mean Curvature in Elliptic Space

We consider the problem of nding a compact starshaped hypresurface in a space form for which the normalized m-th elementary symmetric function of principal curvatures is a prescribed function. In this paper conditions for existence of at least one solution to a nonlinear second order elliptic equation of that problem are established in case of a space form with positive sectional curvature.

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008